On a Measure on the Inductive Limit of Projection Logics

Marjan Matvejchuk^{1,3} and Elena Vladova²

Received June 7, 2004; accepted November 15, 2004

The aim of the paper is to measure the logic of J-projections from inductive limit of W J-algebras studied. The main result is

Theorem. Let \mathcal{A} be a W^*J -factor of countable type (type of \mathcal{A} is different from I_2) and let \mathcal{A} be the inductive limit of W^*J -factors \mathcal{A}_{α} different from I_2 . If (1) \mathcal{A} be a W^*P -factor or (2) \mathcal{A} and all \mathcal{A}_{α} are W^*K -factors, then any indefinite measure $\nu : \cup_{\alpha} \mathcal{A}^h_{\alpha} \to R$ can be unique by the strong operator topology extended to an indefinite measure on \mathcal{A}^h .

KEY WORDS: Hilbert space; projection; measure; von Neumann algebra.

1. INTRODUCTION

Let *H* be a complex Hilbert space with an inner product (\cdot, \cdot) . Fix a selfadjoint unitary operator (=*canonical symmetry*) *J* (i.e., $J = J^* = J^{-1}$, $J \neq \pm I$). The form [x, y] := (Jx, y) is said to be *indefinite metric* and *H indefinite metric space* (=*J-space*, =*Krein space*), see (Azizov and Iokhvidov, 1986). A vector $x \in H$ is said to be *neutral* (*positive, negative*), if [x, x] = 0 ([x, x] > 0, [x, x] <0). An operator $A \in B(H)$ is called to be *J-positive* (*J-negative*) if $[Ax, x] \ge$ 0 ($[Ax, x] \le 0$) for every $x \in H$. Let $A \in B(H)$. The operator $A^{\#} := JA^*J$ is called to be *J-adjoint*. Note $[Ax, y] = [x, A^{\#}y], \forall x, y \in H$.

Let \mathcal{M} be a von Neumann algebra in H. If $J \in \mathcal{M}$ and central covers in \mathcal{M} of projections $P^+ := (1/2)(I + J)$ and $P^- := (1/2)(I - J)$ are equal to I then \mathcal{M} is said to be W^*J -algebra. If, in addition, or P^+ or P^- is finite with respect to \mathcal{M} then \mathcal{M} is said to be W^*P -algebra. A W^*J -algebra \mathcal{M} is said to be W^*K -algebra

637

¹Novorossiiskii Filial of Kuban State University, 353901, Novorossiisk, Str. Geroevdesantnikov, 87, Russia.

² Ulyanovsk State Pedagogical University, 432700, Ulyanovsk, Russia.

³To whom correspondence should be addressed at Novorossiiskii Filial of Kuban State University, 353901, Novorossiisk, Str. Geroevdesantnikov, 87, Russia; e-mail: Marjan.Matvejchuk@ksu.ru.

if the W^* -algebras $P^{\pm}\mathcal{M}P^{\pm}$ contain no non-zero finite direct summand. Let \mathcal{M} be a W^*J -algebra. Let us denote by \mathcal{M}^h , (\mathcal{M}^{pr}) the set of all J- self-adjoint (self-adjoint, respectively) projections from \mathcal{M} , i.e.,

$$\mathcal{M}^h := \{ p \in \mathcal{M} : p = p^2, [px, y] = [x, py], x, y \in H \}.$$

The set $\mathcal{M}^{h}(\mathcal{M}^{pr})$ is said to be *hyperbolical (spherical)* logic. By (Azizov and Iokhvidov, 1986), $p \in \mathcal{M}^{h}$ is said to be *positive (negative)* if $[pz, pz] \ge 0$ $0([pz, pz] \le 0) \forall z \in H$. Let $\mathcal{M}^{h+}(\mathcal{M}^{h-})$ be the set of all positive (negative) projections from \mathcal{M}^{h} . Every $p \in \mathcal{M}^{h}$ is representable (not uniquely!) as $p = p_{+} + p_{-}$, where $p_{\pm} \in \mathcal{M}^{h\pm}$. Let us denote by e_{p}^{+}, e_{p}^{-} orthogonal projections on subspaces $\overline{P^{+}pH}, \overline{P^{-}pH}$ respectively.

Let $\{A_{\alpha}\}$ be a nondecreasing net of W^*J -algebras on H and let $\mathcal{A} := (\bigcup_{\alpha} \mathcal{A}_{\alpha})''$. The algebra \mathcal{A} is said to be *inductive limit* of the net $\{A_{\alpha}\}$. By the analogy, logics \mathcal{A}^{pr} and \mathcal{A}^h are said to be *inductive limits* of logics $\{\mathcal{A}^{pr}_{\alpha}\}$ and $\{\mathcal{A}^h_{\alpha}\}$. Note that if \mathcal{A} is a W^*P -algebra then every \mathcal{A}_{α} is also W^*P -algebra, if \mathcal{A} is a W^*K -algebra then \mathcal{A}_{α} may be W^*P -algebra.

Let \mathcal{E} be one of the logics $\bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$ or $\bigcup_{\alpha} \mathcal{A}_{\alpha}^{h}$. The representation $p = \sum p_i$, where $p, p_i \in \mathcal{E}$ and $p_i p_j = 0 \ i \neq j$ is said to be *decomposition* of p. (The sum should be understood in the strong sense.) The function $\nu : \mathcal{E} \to R$ is said to be *(real) measure* if: 1) $\nu(p) = \Sigma_{\beta} \nu(p_{\beta})$, for any decomposition $p = \Sigma_{\beta} p_{\beta} p, p_{\beta} \in \mathcal{E}$.

A measure v is said to be *probability* if $v \ge 0$, v(I) = 1; *linear* measure if there exists norm continuous linear functional f on A such that $v = f/\mathcal{E}$.

Remark 1.

- 1. The condition (1) is essential in the classical case to continued a measure $\nu : \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr} \to \mathbb{R}^+$ to a measure on \mathcal{M}^{pr} .
- 2. The property (2) $\|v\|(p) := \sup\{\sum |v(p_i)| : \text{ for any decomposition } p = \sum p_i\} < +\infty \forall p \in \bigcup_{\alpha} \mathcal{M}_{\alpha}^{pr} \text{ is equivalent one (3) } M := \sup\{|v(p)|, p \in \bigcup_{\alpha} \mathcal{M}_{\alpha}^{pr}\} < +\infty.$

Really let (2) hold. Then $|\nu(p)| \le ||\nu||(p) \le ||\nu||(I) < +\infty$.

Now, let (3) hold. Put $p_i^+ := p_i$ if $v(p_i) \ge 0$, in another way $p_i^+ := 0$ and $p_i^- := p_i$ if $v(p_i) \le 0$, further $p_i^- := 0$ for any decomposition $p = \Sigma p_i$. Then $\Sigma |v(p_i)| = \Sigma v(p_i^+) - \Sigma v(p_i^-) \le 2M$. Hence $||v||(p) \le 2M$.

Let $M_{\sup} := \sup\{v(p) : p \in \bigcup \mathcal{A}_{\alpha}^{pr}\} \geq 0$ and $M_{\inf} := \inf\{v(p) : p \in \mathcal{A}_{\alpha}^{pr}\} \leq 0$. It is easy to see that $M = \max\{|M_{\inf}|, M_{\sup}\}, v(I) = M_{\sup} + M_{\inf} \text{ and } \|v\|(I) = M_{\sup} - M_{\inf}$.

Note: By Dorofeev (1992) every measure ν on the set Π of all orthogonal projections in a von Neumann algebra containing no finite central summand is

bounded, i.e. (3) sup{ $|\nu(p)| : p \in \Pi$ } < + ∞ ; if dim $H < \infty$ then a measure μ is linear if and only if the property (2) holds.

The measure $\mu : \mathcal{M}^h \to R$ is said to be *indefinite measure* if $\mu/\mathcal{M}^{h+} \ge 0$ and $\mu/\mathcal{M}^{h-} \le 0$; *semitrace* if there exists a faithful normal semifinite trace τ on \mathcal{M}^+ and an operator T affiliated with the center of \mathcal{M} such that or $P^+T \in L_1(\mathcal{M}, \tau)$ and then $\mu(e) = \tau(Te_+), \forall e \in \mathcal{M}^h$ or $P^-T \in L_1(\mathcal{M}, \tau)$ and then $\mu(e) = \tau(Te_-), \forall e \in \mathcal{M}^h$.

2. THE MAIN RESULTS

Proposition 2. Let *H* be a *J*-space, $\mathcal{M} = B(H)$ and let v(p) := Tr(Tp) be a real measure on \mathcal{M}^h , where *T* is a trace class operator. Then *T* may be chosen *J*-self-adjoint.

Really Tr $(Tp) = Tr(T^*p^*) = Tr(JT^*JJp^*J)$. Hence $v(p) = Tr(\frac{1}{2}(T + T^*)p)$.

Proposition 3. Let *H* be a *J*-space and $T = P^+TP^+ + P^+TP^- + P^-TP^+ + P^-TP^- \in B(H)$, where P^+TP^+ , P^-TP^- are self-adjoint. Then *T* is *J*-self-adjoint if and only if $P^-TP^+ = -(P^+TP^-)^*$.

The proof is straightforward.

Proposition 4. Let *H* be a two-dimensional (real or complex) *J*-space, \mathcal{M} be the algebra of two by two matrices on *H* and let $v(p) := \operatorname{Tr}(Tp) + c(\dim p_+)$ be an indefinite measure on \mathcal{M}^h . Let $T = \begin{pmatrix} a & b \\ -\bar{b} & d \end{pmatrix}$ in the orthonormal base $\phi_+ \in P^+H$ and $\phi_- \in P^-H$. Then: (1). $v(P^+) = a + c \ge 0$; (2). $v(P^-) = d \le 0$; (3). $|b| \le (1/2)(a - b)$

Proof: It is easily seen that any one-dimensional positive J-projection have the form

$$p_x := \begin{pmatrix} x & (x^2 - x)^{1/2} e^{i\theta} \\ -(x^2 - x)^{1/2} e^{-i\theta} & -(x - 1) \end{pmatrix}, \quad x \ge 1, \quad \theta \in [0, 2\pi).$$

in the base ϕ_+, ϕ_- . Then

$$\nu(p_x) = \operatorname{Tr}(Tp_x) + c = \operatorname{Tr}\begin{pmatrix} a & b \\ -\bar{b} & d \end{pmatrix} \begin{pmatrix} x & (x^2 - x)^{1/2}e^{i\theta} \\ -(x^2 - x)^{1/2}e^{-i\theta} & -(x - 1) \end{pmatrix} + c$$
$$= (a - d)x + d - 2(x^2 - x)^{1/2} \Re(be^{-i\theta}) + c \ge 0.$$
(1)

If x = 1 then the projection p_1 is equal to P^+ . Therefore, $v(P^+) = v(p_1) = a + c \ge 0$.

The projection $p_x^{\perp} := \begin{pmatrix} -(x-1) & -(x^2-x)^{1/2}e^{i\theta} \\ (x^2-x)^{1/2}e^{-i\theta} & x \end{pmatrix}$ is one-dimensional and negative. Therefore

$$\nu(p_x^{\perp}) = (d-a)x + a + 2(x^2 - x)^{1/2} \Re(be^{-i\theta}) \le 0.$$
(2)

This means that $v(P^-) = v(p_1^{\perp}) = d \le 0$.

Let us divide the left-right side of (1) (or (2)) on x and let $x \to +\infty$. By the arbitrariness of $\theta \in [0, 2\pi)$, we have $|b| \le (1/2)(a - d)$.

Note that in the base ϕ_+, ϕ_- the operator

$$e_t := \begin{pmatrix} t & (t - t^2)^{1/2} e^{i\theta} \\ (t - t^2)^{1/2} e^{-i\theta} & 1 - t \end{pmatrix}$$

where $t \in [0, 1]$ and $\theta \in [0, 2\pi)$ is an one-dimensional orthogonal projection.

Proposition 5. Let conditions of Proposition 4 are fulfilled and T from Proposition 4. Let us define the really measure $\mu(\cdot)$ on $B(H)^{(pr)}$ by $\mu(e_t) := \text{Tr}(T J e_t)$ Then

$$|\mu(e_t)| \le 2(\nu(P^+) + |c|(\operatorname{Tr}(P^+) + |\nu(P^-)|).$$
(3)

Proof: By 1, 2, 3 of Proposition 4,

$$\mu(e_t) = \operatorname{Tr}(T J e_t) = \operatorname{Tr}\begin{pmatrix}a & b \\ -\bar{b} & d\end{pmatrix} \begin{pmatrix}1 & 0 \\ 0 & -1\end{pmatrix} \begin{pmatrix}t & (t-t^2)^{1/2} e^{i\theta} \\ (t-t^2)^{1/2} e^{-i\theta} & 1-t\end{pmatrix}$$
$$= (a+d)t - d - 2(t-t^2)^{1/2} \Re(be^{-i\theta})$$
$$\leq |a| + |d| + 2|b| \leq 2(|a| + |d|) \leq 2(\nu(P^+) + |c| + |\nu(P^-)|) \square$$

In Matvejchuk (1993) the probability measure on the inductive limit of von Neumann algebras was characterized. The following theorem is a generalization of this result.

Theorem 6. Let a von Neumann algebra \mathcal{A} of countable type not contained any type I_2 -direct summand be inductive limit of von Neumann algebras \mathcal{A}_{α} not contained any I_2 -direct summand. Let the measure $v : \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr} \to R$ be such that there exist projections P^+ , $P^- \in \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$, $P^+ + P^- = I$ and a number c with the properties:

- (1) the restriction of v on $\{p \in \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr} : p \leq P^+\}$ and on $\{p \in \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr} : p \leq P^-\}$ is continued to the linear complete additive self-adjoint functional $(:= \tilde{v}_{\pm}(\cdot));$
- (2) $|\nu(p)| \leq c(\nu(e_p^+)| + |\nu(e_p^-)|) \forall p \in \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}.$

Then the measure v can be unique by the strong operator topology extended to a bounded measure on \mathcal{A}^{pr} .

Proof: By conditions (1), (2), $|\nu(p)| \le c(\|\tilde{\nu}_+\| + \|\tilde{\nu}_-\|)$ for all $p \in \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$. Hence $\|\nu(I)\| < +\infty$.

Let ϕ be a faithful normal state on \mathcal{A} . Let $p \in \mathcal{A}^{pr}$ and let a sequence $\{g_n\} \subset \bigcup_{\alpha} \mathcal{A}^{pr}_{\alpha}$ convergent to p in the strong operator topology $(g_n \xrightarrow{s} p$ for brevity). Put $\Delta_{n,m} := \phi(g_n g_m^{\perp} g_n)$. By the construction of Gunson (1972), there exist decompositions $g_n = g_n^0 + g_n^1$, $g_m = g_m^0 + g_m^1$, g_n^0 , g_n^1 , g_m^0 , $g_m^1 \in \bigcup_{\alpha} \mathcal{A}^{pr}_{\alpha}$ such that

$$\phi(g_n^1) \le \Delta_{n,m}, \quad \phi(g_m^1) \le \phi^{1/2}((g_n - g_m)^2) + \Delta_{n,m} + \Delta_{n,m}^{1/2}$$

and $||g_n^0 - g_m^0|| \le \Delta_{n,m}^{1/2}$.

By Matvejchuk (1991) Lemma 7 (see also Gunson, 1972, Theorem 2.11),

$$|\nu(e) - \nu(f)| \le 9 \|\nu\|(I)\|e - f\|^{1/2}, \quad e, f \in \mathcal{A}^{pr}_{\alpha}, \quad \forall \alpha.$$

By (2) of Theorem 6,

$$\begin{aligned} |\nu(g_n) - \nu(g_m)| &\leq \left| \nu(g_n^0) - \nu(g_m^0) \right| + \left| \nu(g_n^1) \right| + \nu(g_m^1) \right| \\ &\leq 9 \|\nu\|(I)\|g_n^0 - g_m^0\|^{1/2} + \left| \nu(g_n^1) \right| + \left| \nu(g_m^1) \right| \\ &\leq 9\Delta_{n,m}^{1/4} + c(|\nu(e_{g_n^1}^+)| + |\nu(e_{g_n^1}^-)|) + c(|\nu(e_{g_m^1}^+)| + |\nu(e_{g_m^1}^-)|). \end{aligned}$$

In the paper Matvejchuk (1982) see the proof of Lemma (2) it was shown that

$$f \xrightarrow{s} 0$$
 implies $e_f^+ \xrightarrow{s} 0$ and $e_f^- \xrightarrow{s} 0$. (4)

Hence $e_{g_n^1}^+ \xrightarrow{s} 0, e_{g_n^1}^- \xrightarrow{s} 0, e_{g_m^1}^+ \xrightarrow{s} 0, e_{g_m^1}^- \xrightarrow{s} 0$. Therefore by (1) of Theorem 6,

$$|\nu(e_{g_n^+}^+)| + |\nu(e_{g_n^-}^-)| + |\nu(e_{g_m^+}^+)| + |\nu(e_{g_m^+}^-)| \to 0 \quad n, m \to \infty$$

This means that the sequence $\{v(g_n)\}$ is fundamental. Put $\tilde{v}(p) := \lim v(g_n)$. It is clear that $\tilde{v}(p)$ is well defined.

(i) Note now if g_n → p, {g_n} ⊂ ∪_α A^{pr}_α then {e⁺_{g_n}} → e⁺_p and {e⁻_{g_n}} → e⁻_p. Hence by the definition of ṽ(·) and by (1) and (2) of Theorem, 6 we have:

$$|\tilde{\nu}(p)| \le c(\tilde{\nu}(e_n^+) + \tilde{\nu}(e_n^-)), \ p \in \mathcal{A}^{pr}$$
(5)

Now let $p_n \subset \mathcal{A}^{pr}$ and $p_n \xrightarrow{s} 0$. Then by the complete additivity of $\tilde{v}(\cdot)$ on $\{e \in \mathcal{A}^{pr} : e \leq P^{\pm}\}$ (see the condition (1) of Theorem 6) and by (5), (a) $\{p_n\} \subset \mathcal{A}^{pr}$ and $p_n \xrightarrow{s} 0$ implies $\tilde{v}(p_n) \to 0$. (ii) Let $e_1, e_2 \in \mathcal{A}^{pr}, e_1 \perp e_2, \{g_m\}_1^\infty \subset \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$ and $g_m \xrightarrow{s} e = e_1 + e_2$ then there exist the sequences $\{g'_m\}$ and $\{g''_m\} \subset \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$ such that $g_m = g'_m + g''_m$ and $g'_m \xrightarrow{s} e_1, g''_m \xrightarrow{s} e_2$. Therefore $\tilde{\mu}(\cdot)$ is additive on \mathcal{A}^{pr}

$$\tilde{\nu}(e_1 + e_2) = \tilde{\nu}(e_1) = \tilde{\nu}(e_2).$$

By (a), $\tilde{\nu}(\cdot)$ is complete additive. Thus for $\tilde{\nu}(\cdot)$ the condition (1) of the definition of the measure is fulfilled.

By (3), $|\tilde{\nu}(p)| \le c(\|\tilde{\nu}_+\| + \|\tilde{\nu}_-\|).$

In Matvejchuk (2000) Theorem 4, we examined indefinite measures on W^*J -algebra (the case B(H) see also Matvejchuk (1991). We have proved:

Let \mathcal{P} be the logic of all J-self-adjoint projections from a W*J-algebra \mathcal{B} acting in a space with an indefinite metric containing no central summand of type $I_{n,m}(n, m \leq 2)$. Then for every indefinite measure $\nu : \mathcal{B}^h \to R$ there is J-self-adjoint trace-class operator T such that:

(i) If \mathcal{B} is a W^{*} P-algebra, then

$$\nu(p) = \operatorname{Tr}(Tp) + \nu_0(p), \quad \forall p \tag{6}$$

for some semitrace v_0

(ii) If \mathcal{B} is a W^*K -algebra, then $\nu(p) = \text{Tr}(Tp), \quad \forall p$.

The main result of the paper is

Theorem 7. Let A be a W^*J -factor of countable type (type of A is different from I_2) and let A be inductive limit of W^*J -factors A_{α} different from I_2 . If

- (1) A be a W^*P -factor or
- (2) A and all A_α are W^{*}K-factors, then any indefinite measure ν : ∪_αA^h_α → R can be unique by the strong operator topology extended to an indefinite measure on A^h.

Proof: Let us establish, for instance, the case (1). (For proof of the case (2) we can proceed analogously). Any central operator from \mathcal{A} is equal to II. Let τ be a faithful normal semifinite trace on \mathcal{A}^+ . Without loss of generality we may assume that $VP^+V^* \leq P^-$ for some partial isometry $V \in \mathcal{A}$ and $\tau(P^+) < +\infty$. Thus by (6), there exists a weakly continuous on the unit sphere of \mathcal{A}_{α} J-self-adjoint linear functional f_{α} such that $\nu(p) = f_{\alpha}(p) + t_{\alpha}\tau(p_+), \forall p \in \mathcal{A}_{\alpha}^{h}$.

By uniqueness of semitrace $t_{\alpha}\tau(p_+)$ on \mathcal{A}^h_{α} and by nondecreasing of $\{\mathcal{A}_{\alpha}\}$, we conclude that the number t_{α} does not depend on α . Thus $t_{\alpha} = t$ for all α .

By uniqueness of $f_{\alpha}(\cdot)$ we conclude that $\alpha \leq \beta$ implies $f_{\alpha}(p) = f_{\beta}(p)$ for all $p \in \mathcal{A}_{\alpha}$. The functional $f_{\alpha}^{J}(\cdot) := f_{\alpha}(J \cdot)$ on \mathcal{A}_{α} is self-adjoint. Put $\mu(p) := f_{\alpha}^{J}(p)$ if $p \in \mathcal{A}_{\alpha}^{pr}$ for all α .

On a Measure on the Inductive Limit of Projection Logics

Let us show that $\mu : \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr} \to R$ is a bounded measure. It is clear that μ is a finite additive function. It is sufficient to proof that μ is strong continuous at 0. The restriction of μ onto $\{p \in \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr} : p \leq P^+\}(\{p \in \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr} : p \leq P^-\})$ is a measure positive (negative, respectively). By Theorem of Matvejchuk (1993), this restrictions are strong continuous at 0.

Let $p \in \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$. The minimal weakly closed *-algebra of operators (:= $\mathcal{A}(p)$) generated by orthoprojections $p, e_p^+ e_p^-$ is the direct integral of factors of type I_2 . The restriction of v on J-projections from $\mathcal{A}(p)$ is an indefinite measure. Let us apply Proposition 5 to the restriction. This means that the inequality

$$|\mu(p)| \le 2(\nu(e_p^+) + |t|\tau(e_p^+) + |\nu(e_p^-)|).$$
(7)

is true. By (4) and (7), $\mu(p) \rightarrow 0$. Hence μ is a measure. By (7) again, $|\mu(p)| \le 2(\|\nu_h\| + |t|\tau(P^+) + \|\nu_h\|)$. Therefore $\mu(\cdot)$ is bounded.

Thus for μ conditions of theorem 6 are fulfilled. By Theorem (Matvejchuk, 1995), there exists a weakly continuous on the unite sphere of \mathcal{A} selfadjoint linear functional (:= $g(\cdot)$) such that $\mu(\cdot) = g(\cdot)/\mathcal{A}_{\alpha}$. It is clear that the formula $\bar{\nu}(p) := g(Jp) + t\tau(p_+), p \in \mathcal{A}^h$ in the case 1) and $\bar{\nu}(p) := g(Jp), p \in \mathcal{A}^h$ in the case 2) give us the continuation.

ACKNOWLEDGMENT

The research described in this paper was made possible in part by the Russian Foundation for Fundamental Research, grant 99-01-00441 and by Min. Obrazovanija Russia, grant EOO-1.0-172.

REFERENCES

- Azizov, T. Y. and Iokhvidov, I. S. (1986). Linear Operator in Space with an Indefinite Metric. *Moscow. Nauka*, 352p. (in Russian), English translation, Wiley, New York, (1989).
- Dorofeev, S. V. (1992). On the problem of boundedness of a signed measure on projections of von Neumann algebra, *Journal of Functional Analysis* 103(1), 209–216.
- Gunson, J. (1972). Physical states on quantum logics I. Annales Del'Institut Henri Poincare, Sect. A XVII(4), 295–311.
- Matvejchuk, M. S. (1981). A theorem on states on quantum logics. II. *Teoret. Mat. Fiz.* 48(2), 271–275, (in Russian). English translation, *Theoretical and Mathematical Physics* 48(2) (1982), 737–740. MR# 83a:81004.
- Matvejchuk, M. S. (1991). Measure on quantum logics of J-spaces. [in Russian] English translation Siberian Mathematical Journal 32(2), 265–272. MR# 92j:46137.
- Matvejchuk, M. S. (1993). Measure on the inductive limit of projection lattices, *International Journal of Theoretical Physics* 32(10), 1927–1931, MR# 94m:46100.

- Matvejchuk, M. S. (1995). Linearity charges on the lattice projections. Izvestija VUZov. Matematika. (9), 48–66. [in Russian] English translation, (1995) Russian Math. (Iz. VUZ), 39(9).
- Matvejchuk, M. S. (2000). Measures on effects and on projections in spaces with indefinite metric, *Fields Institute Communication* 25, 399–414.