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The aim of the paper is to measure the logic of J-projections from inductive limit of W
J-algebras studied. The main result is

Theorem. Let A be a W*J-factor of countable type (type of A is different from
1) and let A be the inductive limit of W*J-factors Ay different from L. If (1) A
be a W* P-factor or (2) A and all A, are W* K -factors, then any indefinite measure
v Uy .Ag — R can be unique by the strong operator topology extended to an indefinite
measure on A"
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1. INTRODUCTION

Let H be a complex Hilbert space with an inner product (-, -). Fix a self-
adjoint unitary operator (=canonical symmetry) J (i.e., J = J* = J~', J # £I).
The form [x, y] := (Jx, y) is said to be indefinite metric and H indefinite metric
space (=J-space, =Krein space), see (Azizov and lokhvidov, 1986). A vector
x € H is said to be neutral (positive, negative), if [x, x] = 0 ([x, x] > 0, [x, x] <
0). An operator A € B(H) is called to be J-positive (J-negative) if [Ax, x] >
0 ([Ax, x] < 0) for every x € H. Let A € B(H). The operator A* := JA*J is
called to be J-adjoint. Note [Ax, y] = [x, A#y], Vx, y € H.

Let M be a von Neumann algebra in H. If J € M and central covers in M of
projections P* := (1/2)(I + J) and P~ := (1/2)(I — J) are equal to / then M
is said to be W*J-algebra. If, in addition, or P or P~ is finite with respect to M
then M is said to be W*P-algebra. A W* J-algebra M is said to be W*K -algebra
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if the W*-algebras P* M P¥ contain no non-zero finite direct summand. Let M
be a W*J-algebra. Let us denote by M”", (MP") the set of all J- self-adjoint
(self-adjoint, respectively) projections from M, i.e.,

M ={peM:p=p*Ipx,yl=Ix, pyl,x,y € H}.

The set M"(MP") is said to be hyperbolical (spherical) logic. By (Azizov
and Iokhvidov, 1986), p € M" is said to be positive (negative) if [pz, pz] >
0([pz, pz] <0)Vz € H. Let M"*(M"~) be the set of all positive (negative)
projections from M”. Every p € M" is representable (not uniquely!) as p =
p+ + p—, where py € M"£. Let us denote by e;,r, e, orthogonal projections on
subspaces P*pH, P~ pH respectively.

Let {A,} be anondecreasing net of W* J-algebrason H and let A := (U, Ay)".
The algebra A is said to be inductive limit of the net {A,}. By the analogy, logics
AP" and A" are said to be inductive limits of logics {A5"} and {A"}. Note that if
A is a W* P-algebra then every A, is also W* P-algebra, if A is a W* K -algebra
then .4, may be W* P-algebra.

Let € be one of the logics Uy A% or Uy A", The representation p = Y p;,
where p, p; € € and p;p; =0i # j is said to be decomposition of p. (The
sum should be understood in the strong sense.) The function v:& — R
is said to be (real) measure if: 1) v(p) = Lgv(pg), for any decomposition
p=ZXppsp.pp €E.

A measure v is said to be probability if v > 0, v(I) = 1; linear measure if
there exists norm continuous linear functional f on A such that v = f/£.

Remark 1.

1. The condition (1) is essential in the classical case to continued a measure
VU AL — R to a measure on MP".

2. The property (2) ||v]| (p) := sup{D_ [v(p;)| : for any decomposition p =
¥p;} < +ooVp € U, ML is equivalent one (3) M := sup{|v(p)|, p €
UgME™Y} < +00.

Really let (2) hold. Then |v(p)| < ||vI(p) < |IvII({) < +o0.

Now, let (3) hold. Put p;r := p; if v(p;) = 0, in another way p;r := 0 and
p; = p;i if v(p;) <0, further p; := 0 for any decomposition p = Xp;. Then
Sv(p)l = Zv(p) — Tv(p;) < 2M. Hence ||[v||(p) < 2M.

Let My, := sup{v(p) : p € UAL }(= 0)and Min¢ := inf{v(p) : p € AL }(<
0).Itis easy to see that M = max{|Mine|, Msup}, v(I) = Mgy + Minsand ||v]|(1) =
Msup - Mint'-

Note: By Dorofeev (1992) every measure v on the set IT of all orthogonal
projections in a von Neumann algebra containing no finite central summand is
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bounded, i.e. (3) sup{|v(p)| : p € T1} < 4+o0; if dim H < oo then a measure u is
linear if and only if the property (2) holds.

The measure p : M”" — R is said to be indefinite measure if w/M"* >0
and ,u//\/lh_ < 0; semitrace if there exists a faithful normal semifinite trace
T on M™T and an operator T affiliated with the center of M such that or
P*T € Li(M, 1) and then pu(e) = t1(Te,), Ve € M" or P~T € L;(M, t) and
then u(e) = t(Te_), Ve € M".

2. THE MAIN RESULTS

Proposition 2. Let H be a J-space, M = B(H) and let v(p) := Tr(Tp) be a
real measure on M", where T is a trace class operator. Then T may be chosen
J-self-adjoint.

Really Tr (Tp) = Tr(T*p*)=Tr(JT*JJp*J). Hence v(p) = Tr(%(T +
T*)p).

Proposition 3. Let H be a J-space and T = P*TPY + PTTP~ + P TP +
P~TP~ € B(H), where PTTP*Y, P~TP~ are self-adjoint. Then T is J-self-
adjoint if and only if P"TPT = —(PTT P™)*.

The proof is straightforward.

Proposition 4. Let H be a two-dimensional (real or complex) J-space, M be
the algebra of two by two matrices on H and let v(p) := Tr(Tp) + c(dim p,)

be an indefinite measure on M Let T = (_aE d) in the orthonormal base

¢ € PP Handp_ € P~ H.Then:(1).v(PY)Y=a+c>0;(2).v(P7)=d <0,
(3).1b] < (1/2)(a — b)

Proof: It is easily seen that any one-dimensional positive J-projection have the
form

X (x2 _x)l/ZeiG
p=| o _ny ) TEL @€l

in the base ¢, ¢_. Then

= Tx(T Y B x (% —x)!/%e"
v(py) = Te(Tpy) +c=Tr b d —(x2 = x) /2710 —(x—=1) e

=(a—dx+d—2x*—=0)"2Rbe )+ ¢ > 0. (1)
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If x =1 then the projection p; is equal to P*. Therefore, v(P1) = v(p;) =
a—+c>0. O
—()C _ 1) _(x2 _ x)l/Zeié)

The projection p;- := ((xg _ )12 X

) is one-dimensional
and negative. Therefore

v(pH) = (d — a)x +a +2(x* — x)*Rbe ") < 0. 2)

This means that v(P~) = v(pi) =d < 0.

Let us divide the left-right side of (1) (or (2)) on x and let x — +o00. By the
arbitrariness of 6 € [0, 27), we have |b| < (1/2)(a — d).

Note that in the base ¢, ¢_ the operator

t (f _ t2)l/26i0
€= (t — 12)1/2¢=if 1—¢ ’

where ¢ € [0, 1] and 6 € [0, 27) is an one-dimensional orthogonal projection.

Proposition 5. Let conditions of Proposition 4 are fulfilled and T from
Proposition 4. Let us define the really measure u(-) on B(H)P"” by u(e;) :=
Tr(T Je;) Then

(el < 200(P) + [e|(Tre(PT) + [v(PT)D). 3

Proof: By 1, 2, 3 of Proposition 4,

(e,) =Tr(TJe;) =Tr a b 10 t (1 — 121210
nier) = 1) = —bd 0-—1 (t — 12)/2¢=i0 | —;

=(a+d)yt—d—20t—1)"Rbe?)
< lal+ |d| + 2|b| < 2(la| + |d|) < 2(v(P*) + |c| + [v(P7)]) m

In Matvejchuk (1993) the probability measure on the inductive limit of von
Neumann algebras was characterized. The following theorem is a generalization
of this result.

Theorem 6. Let a von Neumann algebra A of countable type not contained
any type IL-direct summand be inductive limit of von Neumann algebras A, not
contained any I,-direct summand. Let the measure v : Uy AY" — R be such that
there exist projections P*, P~ € U, AL, PT + P~ = I and a number ¢ with the
properties:

(1) the restriction of von{p € Uy Ay : p < Pt}andon{p € U, A} : p <
P~} is continued to the linear complete additive self-adjoint functional
(= 0£());

@) ()] < cved)] + [v(e; DVp € UL
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Then the measure v can be unique by the strong operator topology extended
to a bounded measure on AP’

Proof: By conditions (1), (2), [v(p)| < c(|V|| + D) for all p € U, AL
Hence ||v(])|| < +o0. O

Let ¢ be a faithful normal state on A. Let p € A”" and let a sequence
{gn} C Uy AL convergent to p in the strong operator topology (g, — p for
brevity). Put A, ,, := ¢(g, gnlqg,,). By the construction of Gunson (1972), there
existdecompositions g, = g° + g!, g» = g% + gL, 8% ¢!, 8%, g} € Uy AL such
that

$(8) < Anms D(8) <0780 — 80 + D + A
1
and [lg) — g5, < Auln.
By Matvejchuk (1991) Lemma 7 (see also Gunson, 1972, Theorem 2.11),

lve) —v(H)I < 9IvliDlle — FI'?, e, f e A, Va.
By (2) of Theorem 6,
v(gn) = v(gn)l < [v(e)) = v(gn)| + [v(e)] + v(en)]
<98l — &5 " + [v(gh) | + [v(gh)]
< 9AY + ev(e)] + Iv(egD + elvief )| + [v(eg .

In the paper Matvejchuk (1982) see the proof of Lemma (2) it was shown that

f =0 implies ef -0 and e; = 0. 4)

+

Hence e, = 0, e;l = 0,e" = 0, eg_l - 0. Therefore by (1) of Theorem 6,

1
n m m

(el + V()] + V(e + Iveg )l = 0 n,m — oo,

This means that the sequence {v(g,)} is fundamental. Put §(p) := lim v(g,).
It is clear that D(p) is well defined.

(i) Note now if g, = p, {gn} C Ug AL then {e;} 5 e[f and {e, } =S e,
Hence by the definition of 7(-) and by (1) and (2) of Theorem, 6 we
have:

[5(p)| < c(¥(e)) + Dle,)), p € AP ®)

Now let p, C A”" and p, = 0. Then by the complete additivity of ¥(-)
on {e € AP" : ¢ < P*} (see the condition (1) of Theorem 6) and by (5),

(@) {pn} C A" and p, > 0 implies ¥(p,) — 0.
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(ii) Let e1, ez € AP, e1Ley, {gn}S° C Ug AL and g, 2 e=e¢ + e, then
there exist the sequences {g/,} and {g//} C U, A} such that g,, = g/, +
g/ and g, > ey, g/, > e,. Therefore fi(-) is additive on A?"

U(er + e2) = P(ey) = D(e).

By (a), ¥(-) is complete additive. Thus for ¥(-) the condition (1) of the
definition of the measure is fulfilled.

By (3), [D(p)| < c(llv4 1l + [[D-1D.

In Matvejchuk (2000) Theorem 4, we examined indefinite measures
on W*J—algebra (the case B(H) see also Matvejchuk (1991). We have
proved:

Let P be the logic of all J-self-adjoint projections from a W*J-algebra B
acting in a space with an indefinite metric containing no central summand of type
I, m(n,m < 2). Then for every indefinite measure v : B" — R there is J-self-
adjoint trace-class operator T such that:

(i) If B is a W* P-algebra, then
v(p) = Tr(Tp) +vo(p), Vp (6)

for some semitrace vy
(i) If Bis a W*K —algebra, then v(p) = Te(Tp), Vp.

The main result of the paper is

Theorem 7. Let A be a W*J-factor of countable type (type of A is different
from I,) and let A be inductive limit of W*J -factors A, different from I. If

(1) A be a W* P-factor or

(2) Aand all A, are W*K -factors, then any indefinite measure v : Uy A" —
R can be unique by the strong operator topology extended to an indefinite
measure on A".

Proof: Let us establish, for instance, the case (1). (For proof of the case (2) we
can proceed analogously). Any central operator from A is equal to tI. Let 7 be a
faithful normal semifinite trace on A™. Without loss of generality we may assume
that V PTV* < P~ for some partial isometry V € A and t(P") < +o00. Thus by
(6), there exists a weakly continuous on the unit sphere of .4, J-self-adjoint linear
functional f, such that v(p) = fo(p) + toT(p5), Vp € AL

By uniqueness of semitrace #,7(p4) on .AZ and by nondecreasing of {A,},
we conclude that the number 7, does not depend on «. Thus ¢, = ¢ for all «.

By uniqueness of f;(-) we conclude that < g8 implies f,(p) = fg(p) forall
p € Ay. The functional £/ (-) := f,(J-) on A, is self-adjoint. Put u(p) := £ (p)
if p e ALY for all .
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Let us show that p : Uy AL — R is a bounded measure. It is clear that p
is a finite additive function. It is sufficient to proof that u is strong continuous at
0. The restriction of  onto {p € Uy AL : p < PT}({p € Uy AL : p < P} isa
measure positive (negative, respectively). By Theorem of Matvejchuk (1993), this
restrictions are strong continuous at 0.

Let p € Uy AY". The minimal weakly closed *-algebra of operators (:=

A(p)) generated by orthoprojections p, e;’ep is the direct integral of factors
of type I,. The restriction of v on J-projections from A(p) is an indefinite
measure. Let us apply Proposition 5 to the restriction. This means that the

inequality
1(p)] < 200(e}) + ltleel) + [v(e;))). %

is true. By (4) and (7), u(p) — 0. Hence u is a measure. By (7) again, |u(p)| <
2(|lvi |l + 121z (PT) =+ |lvi ). Therefore u(-) is bounded.

Thus for p conditions of theorem 6 are fulfilled. By Theorem (Matvejchuk,
1995), there exists a weakly continuous on the unite sphere of A4 selfadjoint
linear functional (:= g(-)) such that u(-) = g(-)/ A,. It is clear that the formula
b(p) :==g(Jp) +tt(py), p € A" in the case 1) and 9(p) := g(Jp), p € A" in
the case 2) give us the continuation.
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