On a Measure on the Inductive Limit of Projection Logics

Marjan Matvejchuk1*,***³ and Elena Vladova²**

Received June 7, 2004; accepted November 15, 2004

The aim of the paper is to measure the logic of *J*-projections from inductive limit of *W J*-algebras studied. The main result is

Theorem. *Let* ^A *be a ^W*∗*^J* -*factor of countable type (type of* ^A *is different from I*₂*)* and let A be the inductive limit of W^*J -factors A_α different from *I*₂. *If* (1) A *be a ^W*∗*P*-*factor or* (2) ^A *and all* ^A*^α are ^W*∗*K*-*factors, then any indefinite measure ν* : ∪_α $\mathcal{A}^h_\alpha \to R$ *can be unique by the strong operator topology extended to an indefinite measure on Ah*.

KEY WORDS: Hilbert space; projection; measure; von Neumann algebra.

1. INTRODUCTION

Let *H* be a complex Hilbert space with an inner product $(·, ·)$. Fix a selfadjoint unitary operator (=*canonical symmetry*) *J* (i.e., $J = J^* = J^{-1}$, $J \neq \pm I$). The form $[x, y] := (Jx, y)$ is said to be *indefinite metric* and *H indefinite metric space* (=*J-space*, =*Krein space*), see (Azizov and Iokhvidov, 1986). A vector *x* ∈ *H* is said to be *neutral* (*positive, negative*), if $[x, x] = 0$ ($[x, x] > 0$, $[x, x] <$ 0). An operator *A* ∈ *B*(*H*) is called to be *J-positive* (*J-negative*) if $[Ax, x]$ ≥ 0 ($[Ax, x] \le 0$) for every $x \in H$. Let $A \in B(H)$. The operator $A^* := JA^*J$ is called to be *J-adjoint*. Note $[Ax, y] = [x, A^{\#}y]$, $\forall x, y \in H$.

Let M be a von Neumann algebra in *H*. If $J \in M$ and central covers in M of projections $P^+ := (1/2)(I + J)$ and $P^- := (1/2)(I - J)$ are equal to *I* then M is said to be *W[∗]J-algebra*. If, in addition, or P^+ or P^- is finite with respect to M then M is said to be W^*P -algebra. A W^*J -algebra M is said to be W^*K -algebra

637

¹ Novorossiiskii Filial of Kuban State University, 353901, Novorossiisk, Str. Geroevdesantnikov, 87, Russia.

² Ulyanovsk State Pedagogical University, 432700, Ulyanovsk, Russia.

³ To whom correspondence should be addressed at Novorossiiskii Filial of Kuban State University, 353901, Novorossiisk, Str. Geroevdesantnikov, 87, Russia; e-mail: Marjan.Matvejchuk@ksu.ru.

if the W^{*}-algebras $P^{\pm}MP^{\pm}$ contain no non-zero finite direct summand. Let M be a W^*J -algebra. Let us denote by \mathcal{M}^h , (\mathcal{M}^{pr}) the set of all *J*- self-adjoint (self-adjoint, respectively) projections from M , i.e.,

$$
\mathcal{M}^{h} := \{ p \in \mathcal{M} : p = p^{2}, [px, y] = [x, py], x, y \in H \}.
$$

The set $\mathcal{M}^h(\mathcal{M}^{pr})$ is said to be *hyperbolical* (*spherical*) logic. By (Azizov and Iokhvidov, 1986), $p \in M^h$ is said to be *positive* (*negative*) if $[pz, pz] \ge$ $0([pz, pz] ≤ 0) \forall z \in H$. Let $\mathcal{M}^{h+}(\mathcal{M}^{h-})$ be the set of all positive (negative) projections from \mathcal{M}^h . Every $p \in \mathcal{M}^h$ is representable (not uniquely!) as $p =$ $p_+ + p_-,$ where $p_{\pm} \in \mathcal{M}^{h\pm}$. Let us denote by e_p^+, e_p^- orthogonal projections on subspaces $\overline{P^+pH}$, $\overline{P^-pH}$ respectively.

Let { A_{α} } be a nondecreasing net of W^*J -algebras on *H* and let $\mathcal{A} := (\cup_{\alpha} A_{\alpha})^{\prime\prime}$. The algebra A is said to be *inductive limit* of the net $\{A_{\alpha}\}\$. By the analogy, logics A^{pr} and A^h are said to be *inductive limits* of logics $\{A^{pr}_{\alpha}\}$ and $\{A^h_{\alpha}\}$. Note that if A is a W^*P -algebra then every A_α is also W^*P -algebra, if A is a W^*K -algebra then A_{α} may be W^*P -algebra.

Let *E* be one of the logics $\cup_{\alpha} A_{\alpha}^{pr}$ or $\cup_{\alpha} A_{\alpha}^{h}$. The representation $p = \sum p_{i}$, where *p*, $p_i \in \mathcal{E}$ and $p_i p_j = 0$ *i* $\neq j$ is said to be *decomposition* of *p*. (The sum should be understood in the strong sense.) The function $v : \mathcal{E} \to R$ is said to be (*real*) *measure* if: 1) $v(p) = \sum_{\beta} v(p_{\beta})$, for any decomposition $p = \sum_{\beta} p_{\beta} p, p_{\beta} \in \mathcal{E}.$

A measure *ν* is said to be *probability* if $v > 0$, $v(I) = 1$; *linear* measure if there exists norm continuous linear functional *f* on A such that $v = f/\mathcal{E}$.

Remark 1.

- 1. The condition (1) is essential in the classical case to continued a measure $\nu : \cup_{\alpha} A_{\alpha}^{pr} \to R^+$ to a measure on \mathcal{M}^{pr} .
- 2. The property (2) $\|\nu\|$ (*p*) := sup{ $\sum |\nu(p_i)|$: for any decomposition *p* = $\sum p_i$ } < +∞ $\forall p \in \bigcup_{\alpha} \mathcal{M}_{\alpha}^{pr}$ is equivalent one (3) M := sup{|*v*(*p*)|*, p* ∈ $\cup_{\alpha} \mathcal{M}_{\alpha}^{pr}$ } < + ∞ .

Really let (2) hold. Then $|v(p)| \le ||v||(p) \le ||v||(I) < +\infty$.

Now, let (3) hold. Put $p_i^+ := p_i$ if $v(p_i) \ge 0$, in another way $p_i^+ := 0$ and $p_i^- := p_i$ if $v(p_i) \leq 0$, further $p_i^- := 0$ for any decomposition $p = \sum p_i$. Then $|\mathcal{L}|\nu(p_i)| = \sum \nu(p_i^+) - \sum \nu(p_i^-) \le 2M$. Hence $||\nu||(p) \le 2M$.

Let $M_{\text{sup}} := \sup \{ \nu(p) : p \in \cup \mathcal{A}_{\alpha}^{pr} \} (\ge 0)$ and $M_{\text{inf}} := \inf \{ \nu(p) : p \in \mathcal{A}_{\alpha}^{pr} \} (\le$ 0). It is easy to see that $M = \max\{|M_{\text{inf}}|, M_{\text{sup}}\}, v(I) = M_{\text{sup}} + M_{\text{inf}}$ and $\|v\|(I) =$ $M_{\rm sup}-M_{\rm inf}$.

Note: By Dorofeev (1992) every measure *ν* on the set Π of all orthogonal projections in a von Neumann algebra containing no finite central summand is *bounded*, i.e. (3) sup{ $|v(p)|$: $p \in \Pi$ } < + ∞ ; if dim $H < \infty$ then a measure μ is linear if and only if the property (2) holds.

The measure $\mu : \mathcal{M}^h \to R$ is said to be *indefinite measure* if $\mu / \mathcal{M}^{h+} > 0$ and $\mu/M^{h-} \leq 0$; *semitrace* if there exists a faithful normal semifinite trace *^τ* on ^M⁺ and an operator *^T* affiliated with the center of ^M such that or $P^+T \in L_1(\mathcal{M}, \tau)$ and then $\mu(e) = \tau(T e_+)$, $\forall e \in \mathcal{M}^h$ or $P^-T \in L_1(\mathcal{M}, \tau)$ and then $\mu(e) = \tau(Te_{-}), \forall e \in \mathcal{M}^{h}$.

2. THE MAIN RESULTS

Proposition 2. Let H be a J-space, $\mathcal{M} = B(H)$ and let $v(p) := Tr(Tp)$ be a *real measure on* ^M*^h, where T is a trace class operator. Then T may be chosen J-self-adjoint.*

Really Tr $(Tp) = Tr(T^*p^*) = Tr(JT^*JJp^*J)$. Hence $v(p) = Tr(\frac{1}{2}(T +$ $T^{\#}(p)$.

Proposition 3. *Let H be a J-space and* $T = P^+TP^+ + P^+TP^- + P^-TP^+ + P^ P^{\dagger}TP^{\dagger} \in B(H)$, where $P^{\dagger}TP^{\dagger}$, $P^{\dagger}TP^{\dagger}$ are self-adjoint. Then T is J-self*adjoint if and only if* $P^{-}TP^{+} = -(P^{+}TP^{-})^{*}$.

The proof is straightforward.

Proposition 4. *Let H be a two-dimensional (real or complex) J-space,* M *be the algebra of two by two matrices on H and let* $v(p) := Tr(Tp) + c(\dim p_+)$ *be an indefinite measure on* \mathcal{M}^h *. Let* $T = \begin{pmatrix} a & b \\ -\overline{b} & d \end{pmatrix}$ *in the orthonormal base* $\phi_{+} \in P^{+}H$ *and* $\phi_{-} \in P^{-}H$ *. Then:* (1). $\nu(P^{+}) = a + c \ge 0$; (2). $\nu(P^{-}) = d \le 0$; *(3).* $|b|$ ≤ (1/2)(*a* − *b*)

Proof: It is easily seen that any one-dimensional positive J-projection have the form

$$
p_x := \begin{pmatrix} x & (x^2 - x)^{1/2} e^{i\theta} \\ -(x^2 - x)^{1/2} e^{-i\theta} & -(x - 1) \end{pmatrix}, \quad x \ge 1, \quad \theta \in [0, 2\pi).
$$

in the base ϕ_+ , ϕ_- . Then

$$
\nu(p_x) = \text{Tr}(Tp_x) + c = \text{Tr}\begin{pmatrix} a & b \\ -\bar{b} & d \end{pmatrix} \begin{pmatrix} x & (x^2 - x)^{1/2} e^{i\theta} \\ -(x^2 - x)^{1/2} e^{-i\theta} & -(x - 1) \end{pmatrix} + c
$$

$$
= (a - d)x + d - 2(x^2 - x)^{1/2} \Re(b e^{-i\theta}) + c \ge 0.
$$
(1)

If $x = 1$ then the projection p_1 is equal to P^+ . Therefore, $v(P^+) = v(p_1) = 1$ $a + c > 0$.

The projection $p_x^{\perp} := \frac{-(x-1)}{(x^2-x)^{1/2}e^{-i\theta}} - \frac{(x^2-x)^{1/2}e^{i\theta}}{x}$ $(x^2 - x)^{1/2}e^{-i\theta}$ *x*) is one-dimensional and negative. Therefore

$$
\nu(p_x^{\perp}) = (d - a)x + a + 2(x^2 - x)^{1/2}\Re(b e^{-i\theta}) \le 0.
$$
 (2)

This means that $v(P^-) = v(p_1^{\perp}) = d \le 0$.

Let us divide the left-right side of (1) (or (2)) on *x* and let $x \to +\infty$. By the arbitrariness of $\theta \in [0, 2\pi)$, we have $|b| \leq (1/2)(a - d)$.

Note that in the base ϕ_+ , ϕ_- the operator

$$
e_t := \begin{pmatrix} t & (t - t^2)^{1/2} e^{i\theta} \\ (t - t^2)^{1/2} e^{-i\theta} & 1 - t \end{pmatrix},
$$

where $t \in [0, 1]$ and $\theta \in [0, 2\pi)$ is an one-dimensional orthogonal projection.

Proposition 5. *Let conditions of Proposition* 4 *are fulfilled and T from Proposition* 4*. Let us define the really measure* $\mu(\cdot)$ *on* $B(H)^{(pr)}$ *by* $\mu(e_t) :=$ $Tr(TJe_t)$ *Then*

$$
|\mu(e_t)| \le 2(\nu(P^+) + |c|(\text{Tr}(P^+) + |\nu(P^-)|). \tag{3}
$$

Proof: By 1, 2, 3 of Proposition 4,

$$
\mu(e_t) = \text{Tr}(TJe_t) = \text{Tr}\begin{pmatrix} a & b \\ -\bar{b} & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} t & (t - t^2)^{1/2} e^{i\theta} \\ (t - t^2)^{1/2} e^{-i\theta} & 1 - t \end{pmatrix}
$$

$$
= (a + d)t - d - 2(t - t^2)^{1/2} \Re(b e^{-i\theta})
$$

$$
\leq |a| + |d| + 2|b| \leq 2(|a| + |d|) \leq 2(\nu(P^+) + |c| + |\nu(P^-)|) \qquad \Box
$$

In Matvejchuk (1993) the probability measure on the inductive limit of von Neumann algebras was characterized. The following theorem is a generalization of this result.

Theorem 6. *Let a von Neumann algebra* A *of countable type not contained any type* I_2 -direct summand be inductive limit of von Neumann algebras A_α *not contained any I*₂*-direct summand. Let the measure* $v : \cup_{\alpha} A_{\alpha}^{pr} \to R$ *be such that there exist projections* P^+ , $P^- \in \bigcup_{\alpha} A_{\alpha}^{pr}$, $P^+ + P^- = I$ *and a number c with the properties:*

- (1) *the restriction of* ν *on* { $p \in \bigcup_{\alpha} A_{\alpha}^{pr}$: $p \leq P^+$ } *and on* { $p \in \bigcup_{\alpha} A_{\alpha}^{pr}$: $p \leq$ *P*[−]} *is continued to the linear complete additive self-adjoint functional* $(:= \tilde{\nu}_{+}(\cdot))$;
- $|v(p)| \le c(v(e_p^+)) + |v(e_p^-|) \forall p \in \bigcup_{\alpha} A_{\alpha}^{pr}$.

Then the measure ν can be unique by the strong operator topology extended to a bounded measure on ^A*pr.*

Proof: By conditions (1), (2), $|v(p)| \le c(\|\tilde{v}_+\| + \|\tilde{v}_-\|)$ for all $p \in \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$. Hence $\|v(I)\| < +\infty$.

Let ϕ be a faithful normal state on A. Let $p \in A^{pr}$ and let a sequence *{g_n*} ⊂ ∪_α $\mathcal{A}_{\alpha}^{pr}$ convergent to *p* in the strong operator topology (*g_n* $\stackrel{s}{\rightarrow} p$ for brevity). Put $\Delta_{n,m} := \phi(g_n g_m^{\perp} g_n)$. By the construction of Gunson (1972), there exist decompositions $g_n = g_n^0 + g_n^1$, $g_m = g_m^0 + g_m^1$, g_n^0 , g_n^1 , g_m^0 , $g_m^1 \in \bigcup_{\alpha} A_{\alpha}^{pr}$ such that

$$
\phi(g_n^1) \leq \Delta_{n,m}, \quad \phi(g_m^1) \leq \phi^{1/2}((g_n - g_m)^2) + \Delta_{n,m} + \Delta_{n,m}^{1/2}
$$

and $||g_n^0 - g_m^0|| \leq \Delta_{n,m}^{1/2}$.

By Matvejchuk (1991) Lemma 7 (see also Gunson, 1972, Theorem 2.11),

$$
|\nu(e)-\nu(f)|\leq 9\|\nu\|(I)\|e-f\|^{1/2},\quad e,f\in \mathcal{A}_{\alpha}^{pr},\quad \forall \alpha.
$$

By (2) of Theorem 6,

$$
|v(g_n) - v(g_m)| \le |v(g_n^0) - v(g_m^0)| + |v(g_n^1)| + v(g_m^1)|
$$

\n
$$
\le 9||v||(I)||g_n^0 - g_m^0||^{1/2} + |v(g_n^1)| + |v(g_m^1)|
$$

\n
$$
\le 9\Delta_{n,m}^{1/4} + c(|v(e_{g_n^1}^+)| + |v(e_{g_n^1}^-)|) + c(|v(e_{g_m^1}^+)| + |v(e_{g_m^1}^-)|).
$$

In the paper Matvejchuk (1982) see the proof of Lemma (2) it was shown that

$$
f \stackrel{s}{\rightarrow} 0
$$
 implies $e_f^+ \stackrel{s}{\rightarrow} 0$ and $e_f^- \stackrel{s}{\rightarrow} 0$. (4)

Hence $e_{g_n^1}^+$ $\stackrel{s}{\rightarrow}$ 0*, e*_{g_n^1} $\stackrel{s}{\rightarrow} 0, e_{g_m^1}^+$ ^{*s*}→ 0*, e*_{g_m^1} $\stackrel{s}{\rightarrow}$ 0. Therefore by (1) of Theorem 6,

$$
|\nu(e_{g_n^+}^+)| + |\nu(e_{g_n^+}^-)| + |\nu(e_{g_m^+}^+)| + |\nu(e_{g_m^+}^-)| \to 0 \quad n,m \to \infty.
$$

This means that the sequence $\{v(g_n)\}\$ is fundamental. Put $\tilde{v}(p) := \lim v(g_n)$. It is clear that $\tilde{v}(p)$ is well defined.

(i) Note now if $g_n \stackrel{s}{\to} p$, $\{g_n\} \subset \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$ then $\{e_{g_n}^+\} \stackrel{s}{\to} e_p^+$ and $\{e_{g_n}^-\} \stackrel{s}{\to} e_p^-$. Hence by the definition of $\tilde{v}(\cdot)$ and by (1) and (2) of Theorem, 6 we have:

$$
|\tilde{\nu}(p)| \le c(\tilde{\nu}(e_p^+) + \tilde{\nu}(e_p^-)), \ p \in \mathcal{A}^{pr}
$$
 (5)

Now let $p_n \subset A^{pr}$ and $p_n \stackrel{s}{\to} 0$. Then by the complete additivity of $\tilde{v}(\cdot)$ on ${e \in \mathcal{A}^{pr} : e \le P^{\pm}}$ (see the condition (1) of Theorem 6) and by (5), (a) $\{p_n\} \subset \mathcal{A}^{pr}$ and $p_n \stackrel{s}{\to} 0$ implies $\tilde{v}(p_n) \to 0$.

(ii) Let $e_1, e_2 \in \mathcal{A}^{pr}, e_1 \perp e_2, \{g_m\}_{1}^{\infty} \subset \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$ and $g_m \stackrel{s}{\rightarrow} e = e_1 + e_2$ then there exist the sequences $\{g'_m\}$ and $\{g''_m\} \subset \bigcup_{\alpha} \mathcal{A}_{\alpha}^{pr}$ such that $g_m = g'_m + g'_m$ g''_m and g'_m $\stackrel{s}{\rightarrow} e_1, g''_m$ $\stackrel{s}{\rightarrow} e_2$. Therefore $\tilde{\mu}(\cdot)$ is additive on \mathcal{A}^{pr}

$$
\tilde{\nu}(e_1+e_2)=\tilde{\nu}(e_1)=\tilde{\nu}(e_2).
$$

By (a), $\tilde{v}(\cdot)$ is complete additive. Thus for $\tilde{v}(\cdot)$ the condition (1) of the definition of the measure is fulfilled.

 $\text{By (3), } |\tilde{v}(p)| \leq c(||\tilde{v}_+|| + ||\tilde{v}_-||).$

In Matvejchuk (2000) Theorem 4, we examined indefinite measures on *W*∗*J*−algebra (the case B(H) see also Matvejchuk (1991). We have proved:

Let $\mathcal P$ be the logic of all J-self-adjoint projections from a W*J-algebra $\mathcal B$ acting in a space with an indefinite metric containing no central summand of type *I_{n,m}*(*n, m* \leq 2). Then for every indefinite measure $v : \mathcal{B}^h \to R$ there is J-selfadjoint trace-class operator T such that:

(i) If β is a W^{*} P-algebra, then

$$
\nu(p) = \text{Tr}(Tp) + \nu_0(p), \quad \forall p \tag{6}
$$

for some semitrace *ν*₀

(ii) If B is a W^*K -algebra, then $v(p) = \text{Tr}(Tp)$, $\forall p$.

The main result of the paper is

Theorem 7. *Let* ^A *be a ^W*∗*^J -factor of countable type (type of* ^A *is different from ^I*2*) and let* ^A *be inductive limit of ^W*∗*^J -factors* ^A*^α different from ^I*2*. If*

- (1) ^A *be a ^W*[∗]*P-factor or*
- (2) A and all A_α are W^*K *-factors, then any indefinite measure* $v : \cup_\alpha A_\alpha^h \to$ *R can be unique by the strong operator topology extended to an indefinite measure on* ^A*^h.*

Proof: Let us establish, for instance, the case (1). (For proof of the case (2) we can proceed analogously). Any central operator from A is equal to tI. Let τ be a faithful normal semifinite trace on A^+ . Without loss of generality we may assume that $VP^+V^* \leq P^-$ for some partial isometry $V \in \mathcal{A}$ and $\tau(P^+) \leq +\infty$. Thus by (6), there exists a weakly continuous on the unit sphere of A_α J-self-adjoint linear functional f_{α} such that $v(p) = f_{\alpha}(p) + t_{\alpha} \tau(p_+)$, $\forall p \in A_{\alpha}^h$.

By uniqueness of semitrace $t_{\alpha} \tau(p_+)$ on \mathcal{A}_{α}^h and by nondecreasing of $\{\mathcal{A}_{\alpha}\}\$, we conclude that the number t_α does not depend on α . Thus $t_\alpha = t$ for all α .

By uniqueness of $f_\alpha(\cdot)$ we conclude that $\alpha \leq \beta$ implies $f_\alpha(p) = f_\beta(p)$ for all $p \in A_\alpha$. The functional $f^J_\alpha(\cdot) := f_\alpha(J \cdot)$ on A_α is self-adjoint. Put $\mu(p) := f^J_\alpha(p)$ if $p \in \mathcal{A}_{\alpha}^{pr}$ for all α .

On a Measure on the Inductive Limit of Projection Logics 643

Let us show that $\mu : \cup_{\alpha} A_{\alpha}^{pr} \to R$ is a bounded measure. It is clear that μ is a finite additive function. It is sufficient to proof that μ is strong continuous at 0. The restriction of μ onto $\{p \in \bigcup_{\alpha} A_{\alpha}^{pr} : p \leq P^+\}$ $(\{p \in \bigcup_{\alpha} A_{\alpha}^{pr} : p \leq P^-\})$ is a measure positive (negative, respectively). By Theorem of Matvejchuk (1993), this restrictions are strong continuous at 0.

Let $p \in \bigcup_{\alpha} A_{\alpha}^{pr}$. The minimal weakly closed ^{*}-algebra of operators (:= $A(p)$) generated by orthoprojections $p, e_p^+e_p^-$ is the direct integral of factors of type I_2 . The restriction of *ν* on J-projections from $A(p)$ is an indefinite measure. Let us apply Proposition 5 to the restriction. This means that the inequality

$$
|\mu(p)| \le 2(\nu(e_p^+) + |t|\tau(e_p^+) + |\nu(e_p^-)|). \tag{7}
$$

is true. By (4) and (7), $\mu(p) \to 0$. Hence μ is a measure. By (7) again, $|\mu(p)| \le$ $2(\|\nu_h\| + |t|\tau(P^+) + \|\nu_h\|)$. Therefore $\mu(\cdot)$ is bounded.

Thus for μ conditions of theorem 6 are fulfilled. By Theorem (Matvejchuk, 1995), there exists a weakly continuous on the unite sphere of A selfadjoint linear functional (:= $g(.)$) such that $\mu(.) = g(.) / \mathcal{A}_{\alpha}$. It is clear that the formula $\bar{\nu}(p) := g(Jp) + t\tau(p_+)$, $p \in A^h$ in the case 1) and $\bar{\nu}(p) := g(Jp)$, $p \in A^h$ in the case 2) give us the continuation.

ACKNOWLEDGMENT

The research described in this paper was made possible in part by the Russian Foundation for Fundamental Research, grant 99-01-00441 and by Min. Obrazovanija Russia, grant EOO-1.0-172.

REFERENCES

- Azizov, T. Y. and Iokhvidov, I. S. (1986). Linear Operator in Space with an Indefinite Metric. *Moscow. Nauka*, 352p. (in Russian), English translation, Wiley, New York, (1989).
- Dorofeev, S. V. (1992). On the problem of boundedness of a signed measure on projections of von Neumann algebra, *Journal of Functional Analysis* **103**(1), 209–216.
- Gunson, J. (1972). Physical states on quantum logics I. *Annales Del'lnstitut Henri Poincare, Sect. A* **XVII**(4), 295–311.
- Matvejchuk, M. S. (1981). A theorem on states on quantum logics. II. *Teoret. Mat. Fiz.* **48**(2), 271–275, (in Russian). English translation, *Theoretical and Mathematical Physics* **48**(2) (1982), 737–740. MR# 83a:81004.
- Matvejchuk, M. S. (1991). Measure on quantum logics of J-spaces. [in Russian] English translation *Siberian Mathematical Journal* **32**(2), 265–272. MR# 92j:46137.
- Matvejchuk, M. S. (1993). Measure on the inductive limit of projection lattices, *International Journal of Theoretical Physics* **32**(10), 1927–1931, MR# 94m:46100.
- Matvejchuk, M. S. (1995). Linearity charges on the lattice projections. *Izvestija VUZov. Matematika.* (9), 48–66. [in Russian] English translation, (1995) *Russian Math. (Iz. VUZ)*, **39**(9).
- Matvejchuk, M. S. (2000). Measures on effects and on projections in spaces with indefinite metric, *Fields Institute Communication* **25**, 399–414.